Improving Object Detection via Local-global HUAWEI **Contrastive Learning**

Danai Triantafyllidou ^{1*}, Sarah Parisot¹ Ales Leonardis², Steven McDonagh³

Huawei Noah's Ark Lab¹ University of Birmingham² University of Edinburgh³

danaitri22@gmail.com, s.mcdonagh@ed.ac.uk

Detection performance suffers as a result

- Detector source domain $\{\mathbf{y}_i\}_{i=1}^N$, target domain $\{\mathbf{x}_i\}_{i=1}^N$
- Learn a mapping $f: \mathcal{X} \to \mathcal{Y}$ to alleviate visual domain shift and improve detection performance

Spatial Attention

- Encoder-decoder model implicitly separates semantic content into foreground and background regions through spatial attention maps
- Decompose decoder as G_C and G_A , producing a set of n content maps

2024

t-SNE visuliazation of G_A features; we randomly sample features corresponding to object regions

Foggy cityscapes \rightarrow Cityscapes [10]	gy cityscapes $ ightarrow$ Cityscap	es [<mark>10</mark>
--	-------------------------------------	----------------------

Method	person	rider	car	truck	bus	train	motor	bike	$ mAP\uparrow$
FGRR [<mark>5</mark>]	34.4	47.6	51.3	30.0	46.8	42.3	35.1	38.9	40.8
DAF+NLTE [36]	37.0	46.9	54.8	32.1	49.9	43.5	29.9	39.6	41.8
TIA [77]	34.8	46.3	49.7	31.1	52.1	48.6	37.7	38.1	42.3
SCAN [<mark>30</mark>]	41.7	43.9	57.3	28.7	48.6	48.7	31.0	37.3	42.1
SIGMA [<mark>31</mark>]	46.9	48.4	63.7	27.1	50.7	35.9	34.7	41.4	43.5
SDA [47]	38.8	45.9	57.2	29.9	50.2	51.9	31.9	40.9	43.3
MGA [79]	43.9	49.6	60.6	29.6	50.7	39.0	38.3	42.8	44.3
DA-DETR [74]	49.9	50.0	63.1	24.0	45.8	37.5	31.6	46.3	43.5
memCLR [60]	37.7	42.8	52.4	24.5	40.6	31.7	29.4	42.2	37.7
MIC [17]	52.4	47.5	67.0	40.6	50.9	55.3	33.7	33.9	47.6
CDAT [4]	42.3	51.7	64.0	26.0	42.7	37.1	42.5	44.0	43.8
Ours - supervised $(\mathcal{L}_{G_{A_{sup}}})$	44.4	49.5	61.4	32.6	50.8	52.2	38.3	44.0	<u>46.7</u>
CUT* [†] [43]	39.6	45.3	59.4	27.9	47.4	45.4	35.3	39.2	42.4
FeSeSim ^{*†} [78]	40.9	47.2	58.4	28.4	48.6	49.8	34.3	42.7	43.8
Qs-Att.* [†] [19]	42.2	49.0	60.3	23.5	50.5	52.0	36.6	41.4	44.4
NEGCUT ^{*†} [63]	42.2	48.2	58.8	27.9	47.8	50.2	34.9	43.7	44.2
$Hneg_SCR^{*\dagger}$ [25]	42.8	46.9	59.7	32.3	48.4	48.9	36.8	43.4	44.9
$Santa^{*\dagger}$ [63]	42.3	47.9	59.4	34.4	49.3	49.1	36.4	42.3	<u>45.1</u>
Source	35.5	38.7	41.5	18.4	32.8	12.5	22.3	33.6	29.4
Target Oracle	47.5	51.7	66.9	39.4	56.8	49.0	43.2	47.3	50.2
Ours - local-global † (\mathcal{L}_{G_A})	43.2	50.1	61.7	33.3	48.6	47.8	35.2	42.6	45.3

- Prior works leverage object annotations to process object regions separately
- Annotations are expensive and often infeasible to obtain

Hypothesis

- Spatial attention can enhance translation quality in local regions
- Content delineation can be facilitated through *local-global* contrastive learning

Contributions

 $\{C_t \mid t \in [0, n-1]\}$ and a set of n+1 attention maps $\{A_t \mid t \in [0, n]\}$

• Recover the translated output as $G(\mathbf{x}) = \sum_{t=1}^{n} (C^t \odot A^t) + (x \odot A^{n+1})$ background foreground

Optimization

$$\mathcal{L}_{\text{TOTAL}} = \underbrace{\mathcal{L}_{adv}}_{\text{appearance}} + \underbrace{\mathcal{L}^{NCE}}_{\text{structure}} + \underbrace{\mathcal{L}^{G_A}}_{\text{local-global}}$$

$$\underset{\text{transfer}}{\text{transfer}} \text{ preservation} \quad \underset{\text{guidance}}{\text{attention}}$$

$$\frac{CE}{det} = -\log \frac{\exp(q \cdot k_{\text{s}} / \tau)}{\exp(q \cdot k_{\text{s}} / \tau)}$$

$$\mathcal{L}^{NCE} = -\log \frac{\exp(q \cdot k_{\star} / \tau)}{\exp(q \cdot k_{\star} / \tau) + \sum_{k_{-}} \exp(q \cdot k_{\star} / \tau)}$$

• \mathcal{L}_{adv} adversarial term – translated images match appearance of domain \mathcal{Y} • \mathcal{L}^{NCE} patchwise infoNCE loss maximizing mutual information between input and translated patches – drives structural preservation

Local-global contrastive learning

• Guide the attention generator G_A by contrasting local-global representations; alleviating the need for object annotations • Multi-level supervision directly optimising G_A features

Methods without access to object annotations during training denoted *†*. See paper for corresponding references and further details

Adaptation scenarios

Adverse \rightarrow Clear weather Foggy Cityscapes \rightarrow Cityscapes [10]

Synthetic-to-real Sim10k [23] \rightarrow Cityscapes [10]

Real-world cross-camera KITTI $[12] \rightarrow \text{Cityscapes} [10]$

1 Novel I2I translation framework for cross-domain object detection

• An inductive prior that optimises object appearance through spatial attention maps

3 Leverage local-global contrastive learning to learn discriminative representations

• State-of-the-art performance on three visual domain adaptation scenarios; assuming a pre-trained frozen detector model

* Currently with Kittl: https://www.kittl.com/

 $\Box g \leftrightarrow g$ loss term between *global* representations of **x** $\Box g \leftrightarrow l, l \leftrightarrow l$ terms considering *local-to-global* and *local-to-local* representations of **x** \Box for network layers L; layer contribution weights w_i

Local-global self-supervision accentuates semantic object regions and improves translation in areas critical for object detection

Links **Contact:** danaitri22@gmail.com s.mcdonagh@ed.ac.uk **Project Page:** Paper: