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Domain Adaptive
Object Detection

Problem:
Detection models fail to gener-
alise to new domains with visually
distinct images
Solution:
Image-to-image translation → miti-
gate domain shift at the input level
Challenge:
Global style-translation treats all image re-
gions uniformly, leading to:
□ loss of local structures & object details
□ semantically inconsistent textures
Detection performance suffers as a result

Domain shift
Foggy Weather

Translated
Foggy → Clear Weather

Translated (ours)
Foggy → Clear Weather

• Prior works leverage object annotations
to process object regions separately

• Annotations are expensive and often
infeasible to obtain

Hypothesis
• Spatial attention can enhance

translation quality in local regions
• Content delineation can be facilitated

through local-global contrastive learning

Contributions

1 Novel I2I translation framework
for cross-domain object detection

2 An inductive prior that optimises
object appearance through spatial
attention maps

3 Leverage local-global contrastive
learning to learn discriminative
represenations

4 State-of-the-art performance on
three visual domain adaptation
scenarios; assuming a pre-trained
frozen detector model

* Currently with Kittl: https://www.kittl.com/

Method

• Detector source domain {yi}N
i=1, target domain {xi}N

i=1
• Learn a mapping f :X → Y to alleviate visual domain shift and improve

detection performance

Spatial Attention
• Encoder-decoder model implicitly separates semantic content into

foreground and background regions through spatial attention maps
• Decompose decoder as GC and GA, producing a set of n content maps

{Ct | t ∈ [0, n−1]} and a set of n + 1 attention maps {At | t ∈ [0, n]}

• Recover the translated output as G(x) = ∑n
t=1 (Ct ⊙ At)︸ ︷︷ ︸

foreground
+ (x ⊙ An+1)︸ ︷︷ ︸

background

Optimization
Ltotal = Ladv︸ ︷︷ ︸

appearance
transfer

+ LNCE︸ ︷︷ ︸
structure

preservation

+ LGA︸ ︷︷ ︸
local-global
attention
guidance

LNCE = − log exp(q · k
+
/ τ )

exp(q · k
+
/ τ ) + ∑

k− exp(q · k
−
/ τ )

•Ladv adversarial term – translated images match appearance of domain Y
•LNCE patchwise infoNCE loss maximizing mutual information between

input and translated patches – drives structural preservation

Local-global contrastive learning

• Guide the attention generator GA by contrasting local-global
representations; alleviating the need for object annotations

• Multi-level supervision directly optimising GA features

LGA
=

L∑
i=1

wiLNCE
g↔g +

L∑
i=1

wiLNCE
g↔l +

L∑
i=1

wiLNCE
l↔l

□ g ↔ g loss term between global representations of x
□ g ↔ l, l ↔ l terms considering local-to-global and local-to-local representations of x
□ for network layers L; layer contribution weights wi

Input x ∈ X Attention map 1 Attention map 2 Attention map 3 Output G(x) ∈ Y

Local-global self-supervision accentuates semantic object regions and improves translation in areas critical for object detection

Ablative study

Det. backbone GA LGA
Supervision Attention mAP @ 0.5

- 42.7
✓ - ✓ 44.4

Res-50 ✓ ✓ local–global LGA
✓ 45.3

Method components improve detection performance

Baseline without GA Self-supervised GA Supervised GA

t-SNE visuliazation of GA features; we randomly
sample features corresponding to object regions
(red) and background regions (blue)

Quantitative results

Foggy cityscapes → Cityscapes [10]
Method person rider car truck bus train motor bike mAP ↑
FGRR [5] 34.4 47.6 51.3 30.0 46.8 42.3 35.1 38.9 40.8
DAF+NLTE [36] 37.0 46.9 54.8 32.1 49.9 43.5 29.9 39.6 41.8
TIA [77] 34.8 46.3 49.7 31.1 52.1 48.6 37.7 38.1 42.3
SCAN [30] 41.7 43.9 57.3 28.7 48.6 48.7 31.0 37.3 42.1
SIGMA [31] 46.9 48.4 63.7 27.1 50.7 35.9 34.7 41.4 43.5
SDA [47] 38.8 45.9 57.2 29.9 50.2 51.9 31.9 40.9 43.3
MGA [79] 43.9 49.6 60.6 29.6 50.7 39.0 38.3 42.8 44.3
DA-DETR [74] 49.9 50.0 63.1 24.0 45.8 37.5 31.6 46.3 43.5
memCLR [60] 37.7 42.8 52.4 24.5 40.6 31.7 29.4 42.2 37.7
MIC [17] 52.4 47.5 67.0 40.6 50.9 55.3 33.7 33.9 47.6
CDAT [4] 42.3 51.7 64.0 26.0 42.7 37.1 42.5 44.0 43.8
Ours - supervised (LGAsup

) 44.4 49.5 61.4 32.6 50.8 52.2 38.3 44.0 46.7
CUT∗† [43] 39.6 45.3 59.4 27.9 47.4 45.4 35.3 39.2 42.4
FeSeSim∗† [78] 40.9 47.2 58.4 28.4 48.6 49.8 34.3 42.7 43.8
Qs-Att.∗† [19] 42.2 49.0 60.3 23.5 50.5 52.0 36.6 41.4 44.4
NEGCUT∗† [63] 42.2 48.2 58.8 27.9 47.8 50.2 34.9 43.7 44.2
Hneg_SCR∗† [25] 42.8 46.9 59.7 32.3 48.4 48.9 36.8 43.4 44.9
Santa∗† [63] 42.3 47.9 59.4 34.4 49.3 49.1 36.4 42.3 45.1
Source 35.5 38.7 41.5 18.4 32.8 12.5 22.3 33.6 29.4
Target Oracle 47.5 51.7 66.9 39.4 56.8 49.0 43.2 47.3 50.2
Ours - local-global † (LGA

) 43.2 50.1 61.7 33.3 48.6 47.8 35.2 42.6 45.3

Methods without access to object annotations during training denoted †.
See paper for corresponding references and further details

Adaptation scenarios

Adverse → Clear weather
Foggy Cityscapes → Cityscapes [10]

Synthetic-to-real
Sim10k [23] → Cityscapes [10]

Real-world cross-camera
KITTI [12] → Cityscapes [10]
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