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Domain Adaptive
Object Detection

Problem:

Detection models fail to gener-
alise to new domains with visually
distinct images

Solution:

Image-to-image translation — miti-
cate domain shift at the input level

Challenge:
Global style-translation treats all image re-
oions uniformly, leading to:

loss of local structures & object details

semantically inconsistent textures

Detectlon performance suffers as a result

car 88%

Domain shitt
Foggy Weather

Translated (ours)
Foggy — Clear Weather

e Prior works leverage object annotations
to process object regions separately

e Annotations are expensive and often
infeasible to obtain

Hypothesis

e Spatial attention can enhance
translation quality in local regions

e Content delineation can be facilitated
through local-global contrastive learning

Contributions

o Novel 121 translation framework
for cross-domain object detection

® An inductive prior that optimises
object appearance through spatial
attention maps

® Leverage local-global contrastive

learning to learn discriminative
represenations

o State-of-the-art performance on
three visual domain adaptation
scenarios; assuming a pre-trained
frozen detector model

* Currently with Kittl: https://www.kittl.com/
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e Detector source domain {y;},, target domain {x;},

e Learn a mapping f:X — )Y to alleviate visual domain shift and improve

e Incoder-decoder model implicitly separates semantic content into
foreground and background regions through spatial attention maps

e Decompose decoder as G and G4, producing a set of n content maps
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o L.4 adversarial term — translated images match appearance of domain Y

loss maximizing mutual information between

input and translated patches — drives structural preservation

Local-global contrastive learning

e Guide the attention generator G4 by contrasting local-global
representations; alleviating the need for object annotations

e Multi-level supervision directly optimising GG 4 features
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Attention map 1

Local-global self-supervision accentuates semantic object regions and improves translation in areas critical for object detection

Attentlon map 2

g <> g loss term between global representations of x
g < [, | < [ terms considering local-to-global and local-to-local representations of x
for network layers L; layer contribution weights w;

Attention map 3 Output G/(x)
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Method components improve detection performance

Baseline without G4

Self-supervised G 4

Supervised G 4

t-SNE visuliazation of G4 features; we randomly
sample features corresponding to object regions
(red) and background regions (blue)

Quantitative results

Foggy cityscapes — Cityscapes [10]

Method person rider car truck bus train motor bike mAP 1
FGRR [5] 344 476 51.3 30.0 46.8 42.3 35.1 38.9| 40.8
DAF+NLTE [36] 37.0 46.9 54.8 32.1 499 435 29.9 39.6] 418
TIA [77] 34.8 46.3 49.7 31.1 52.1 486 37.7 38.1] 42.3
SCAN [30] A1.7 439 57.3 28.7 48.6 48.7 31.0 37.3] 42.1
SIGMA [31] 46.9 48.4 63.7 27.1 50.7 359 34.7 41.4] 43.5
SDA [47] 38.8 459 57.2 29.9 50.2 51.9 31.9 40.9| 43.3
MGA [79] 43.9 49.6 60.6 29.6 50.7 39.0 38.3 42.8| 44.3
DA-DETR [74] 49.9 50.0 63.1 24.0 45.8 37.5 31.6 46.3] 43.5
memCLR [60] 377 428 52.4 24.5 40.6 31.7 294 422 37.7
MIC [17] b24 475 67.0 40.6 50.9 55.3 33.7 33.9 47.6
CDAT [4] 42.3 51.7 64.0 26.0 42.7 37.1 425 44.0] 438
Ours - supervised <£GASW> 444 49.5 61.4 32.6 50.8 52.2 38.3 44.0| 46.7
CUT* [43] 39.6 453 59.4 279 474 454 353 39.2| 424
FeSeSim*T [78] 40.9 47.2 584 284 48.6 49.8 34.3 42.7] 438
Qs-Att.*T [19] 422 49.0 60.3 23.5 50.5 52.0 36.6 41.4| 444
NEGCUT*T [63] 422 48.2 H88 279 47.8 50.2 34.9 43.7) 44.2
Hneg SCR*T [25] 42.8 46.9 59.7 32.3 48.4 489 36.8 43.4| 44.9
Santa*T [63] 423 479 594 344 493 49.1 364 423 45.1
Source 35.5 38.7 41.5 184 328 125 223 33.6] 294
Target Oracle 475 HL.7 669 394 56.8 49.0 43.2 47.3) 50.2
Ours - local-global T (Lg,)| 432 50.1 61.7 33.3 48.6 47.8 352 426 45.3

Methods without access to object annotations during training denoted §.

See paper for corresponding references and further details

Adaptation scenarios

Adverse — Clear weather
Foggy Cityscapes — Cityscapes [10]

Synthetic-to-real
S1m1()k [23] — Cltyscapes [10]

Real-world cross-camera
KITTT [12] — Cityscapes [10]
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