
TRIANTAFYLLIDOU, PARISOT, LEONARDIS, MCDONAGH: 1

Improving Object Detection via Local-global
Contrastive Learning

Danai Triantafyllidou1∗,†

danaitri22@gmail.com

Sarah Parisot1

sarah.parisot@huawei.com

Ales Leonardis2,†

a.leonardis@cs.bham.ac.uk

Steven McDonagh3,†

s.mcdonagh@ed.ac.uk

1 Huawei Noah’s Ark Lab
2 University of Birmingham
Birmingham, UK

3 University of Edinburgh
Edinburgh, UK

Abstract

Visual domain gaps often impact object detection performance. Image-to-image
translation can mitigate this effect, where contrastive approaches enable learning of the
image-to-image mapping under unsupervised regimes. However, existing methods of-
ten fail to handle content-rich scenes with multiple object instances, which manifests in
unsatisfactory detection performance. Sensitivity to such instance-level content is typi-
cally only gained through object annotations, which can be expensive to obtain. Towards
addressing this issue, we present a novel image-to-image translation method that specif-
ically targets cross-domain object detection. We formulate our approach as a contrastive
learning framework with an inductive prior that optimises the appearance of object in-
stances through spatial attention masks, implicitly delineating the scene into foreground
regions associated with the target object instances and background non-object regions.
Instead of relying on object annotations to explicitly account for object instances during
translation, our approach learns to represent objects by contrasting local-global informa-
tion. This affords investigation of an under-explored challenge: obtaining performant
detection, under domain shifts, without relying on object annotations nor detector model
fine-tuning. We experiment with multiple cross-domain object detection settings across
three challenging benchmarks and report state-of-the-art performance.

Project page: https://local-global-detection.github.io

1 Introduction
Deep learning based object detection has become an indispensable part of many computer vi-
sion applications such as autonomous navigation. State-of-the-art detection models typically
rely on large-scale annotated data in order to learn representative features and yet often fail
to generalize well to new target domains that exhibit visual disparity, (such as foggy vs. clear
weather scenes), with common benchmarks typically reporting falls in detection accuracy in
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Figure 1: Left: visual domains, unseen during object detector training, hurt detection performance.
Middle: global image-to-image translation (foggy → clear weather) provides some benefit to down-
stream detection performance, yet homogeneous image translation strategies result in small objects,
with low contrast regions, that remain undetectable. Right: Our local-global approach is guided to
better delineate objects during translation and thus cross-domain detection is improved.

excess of 20% (see Sec. 4.2 for details). Performance drops drastically due to the domain
shift problem. Image-to-image (I2I) translation aims to mitigate such domain gaps at the
input level and thereby reduce the distribution shift in the visual domain. Such approaches
enable an existing (i.e. pre-trained) detector, trained on the source domain, to function well
on source-like images, translated from the target domain. It has been evidenced that this
process is able to improve target domain detection performance [4, 41, 63].

The high costs related to (domain-wise) paired image data collection have steered com-
munity interest towards unpaired I2I translation. Pioneering unpaired image translation work
has made use of cycle-consistency [71] and shared latent space assumptions [32]. Such meth-
ods have become the de facto translation modules in many works. However, they can often
lead to severe content distortions and shape deformation as they assume a bijective relation-
ship between source and target domains [36]. Such failures to ensure content preservation
may in turn adversely affect performance in downstream object detection tasks [35], where
this effect is exemplified in Fig. 1.

Explicitly accounting for object instances has provided an intuitive direction for improv-
ing image translation in spatial regions that are critical to down-stream detection [2, 20, 46,
47]. However, these works rely on object annotations in order to treat object and background
spatial image regions distinctly in the target domain, which fundamentally limits their appli-
cability. In cases where strong pre-trained detectors exist, yet object labels are inaccessible
or are otherwise infeasible to obtain, such strategies become unsuitable. We offer a new
perspective and alternatively consider the scenario where labels are unavailable, an under-
explored and yet practical problem setting, where we further propose a method to account
for this gap in the literature.

Contrastive learning has emerged as a promising strategy for solving I2I translation,
through the maximisation of mutual information between corresponding input and output
patches [18, 37, 69]. While recent contrastive-based translation results report promising in-
creases for standard image quality metrics [15, 39], these approaches consider image transla-
tion as a global task; i.e. a translation problem where all image regions are treated uniformly.
Framing translation in this manner can lead to unsatisfactory outcomes when considering
object-rich images with complex local structures; the visual disparity between objects and
background is often large. We hypothesize that implicitly modeling background and fore-
ground object regions can enhance translation quality in local salient areas, significantly
improving downstream object detection. Additionally, we propose that the separation of
foreground and background can be accomplished through local-global contrastive learning.

Motivated by this intuition, we propose a contrastive learning-based I2I translation frame-
work for cross-domain object detection. We introduce an architectural inductive prior that
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optimises object instance appearance using spatial attention masks, effectively disentangling
scenes into background and foreground regions. We note that while previous studies [66]
have employed the “background / foreground” terminology to describe explicit content sep-
aration based on object annotations, our approach learns to delineate content under unsu-
pervised conditions1. Inspired by the recent success of region-based representation learn-
ing [56, 59, 62], we alternatively rely on contrasting local and global views to learn discrim-
inative representations and separate content. Our main contributions can be summarised as:

• We propose a novel attention guided I2I translation framework for cross-domain ob-
ject detection. Our approach encourages the model to optimise local image region
appearance without requiring object annotations and can be used in conjunction with
a frozen pre-trained object detector.

• We illustrate how the idea of local-global contrastive learning can be used to improve
image-to-image translation for object detection: implicitly differentiating between ob-
jects and background image regions gives rise to robust translation of object image
regions, amenable for detection tasks.

• We conduct extensive experiments in common domain adaptation and detection set-
tings, reporting state-of-the-art performance under three visual adaptation scenarios.

2 Related work
We briefly review topics most relevant to our core ideas and refer to [35, 36] for extensive
surveys on both image-to-image translation and domain adaptation for object detectors.
Instance-aware I2I translation. Instance-aware I2I translation has recently garnered in-
terest, towards enabling models to translate objects and background areas separately. Shen
et al. [46, 47] perform translation with distinct encoder-decoder blocks to generate separate
object, background and global image style codes and provide the model with object-specific
guidance in relation to translation. Following the idea of distinct instance region encodings,
Bhattacharjee et al. [2] propose to jointly learn image translation and detection, therefore
focussing on certain objects during translation. A class-aware memory network was used
in [20] to store features and retain individual object styles, thus improving translation for
images with multiple objects. The recent work of [25] performs instance-aware I2I using a
transformer model, trained with contrastive learning. All of these works crucially assume
access to object annotations during training in order to guide the translation.
Trainable cross-domain object detectors. In contrast to I2I, cross-domain detection solu-
tions integrate Unsupervised Domain Adaptation (UDA) techniques, within object detection
pipelines. An extensive set of cross-domain object detector training strategies exist; adver-
sarial feature learning for domain invariant representations, pseudo-labels for self-training,
graph reasoning and domain randomization, among others [4, 5, 10, 17, 24, 28, 29, 30,
31, 40, 41, 43, 47, 48, 54, 57, 58, 61, 68]. This tranche of works fundamentally involve
training or otherwise adapting a detector model. However, adaptation strategies typically as-
sume that source domain object labels remain available and such methods are also known to
suffer from catastrophic forgetting problems [53]. We consider direct comparison with this

1Despite not using object annotations, our empirical results demonstrate effective separation of content, leading
us to adopt this terminology.
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class of methods under common experimental settings to offer useful insight, with respect to
investigation of method efficacy and related trade-offs (further details are found in Sec. 4).
Contrastive learning. Contemporary self-supervised learning aims to exploit the underlying
structures in the data and build unsupervised visual representations; either by solving gen-
erative pretext tasks (e.g. colourisation, inpainting, jigsaw puzzles) or through contrastive
learning. Contrastive learning has shown great potential when performing instance dis-
crimination tasks [7, 8, 73], where the objective is formed by generating different views
of an image and maximising their similarity through data augmentation. The success of
such methods is mainly attributed to the ability of contrastive learning to encode seman-
tic priors across different images [38]. More recently, there has been increased interest in
region-based representation learning, shifting the focus to learning local descriptors that are
relevant for dense prediction tasks such as image segmentation and object detection. Indeed,
global-local and multi-scale crop strategies have proven popular in self-supervised and un-
supervised (contrastive) learning scenarios where prevalent works include BYOL [13] and
DINO [64]. Learning region-level representations has been realised through image seg-
mentation masks [14, 51, 67] and by contrasting between local patches and global image
views [59]. These recent successes lead contrastive learning to become a prevailing compo-
nent of self-supervised learning and particularly successful in pre-training a strong feature
extractor for several local and global discriminative tasks.

Park et al. [37] employed a contrastive approach to the I2I translation task and en-
force their model to preserve structure in corresponding input and output spatial locations.
Zheng et al. [69] further improve the structure consistency constraint by contrasting self-
similarity patches. Huet et al. [18] proposed an entropy based query selection mechanism,
towards enabling feature selection that better reflects domain specific characteristics. Jung et
al. [23] enable semantic awareness in a contrastive setting through the exploitation of seman-
tic relation consistencies across image patches. However we note that these methods lack
in-built mechanisms to exploit instance-level information, specifically relating to semantic
objects in a scene. We foresee this as a potential shortcoming for downstream detection tasks
and experimentally evidence this conjecture (Sec. 4.2).

3 Method

3.1 Preliminaries
Self-supervised representations are realised under a contrastive learning regime by consid-
ering a dictionary look-up task. Specifically, given an encoded query q, the task is to identify
which single positive key k+ matches the query q among a set of encoded keys {k0,k1, ...}.
The InfoNCE loss function [34] is employed to attract q close to k+ while pushing it away
from a set of alternative negative keys {k−}:

LNCE =− log
exp(q · k+ / τ)

exp(q · k+ / τ)+∑k− exp(q · k− / τ)
, (1)

with τ a temperature hyperparameter. For vision tasks, positive pairs q and k+ can be formed
by generating two different views from the same image or different views that pertain to a
global image and a local patch [59].

Contrastive learning for unpaired I2I translation. Contrastive techniques can be
leveraged for the I2I translation task by constraining matching spatial locations (image patches)
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between the input image and translated output image to have high mutual information. In this
case, the query patch q is created by encoding a local region of the output image. The posi-
tive key k+ refers to the corresponding region of the input, while the set of negative keys {k−}
are selected by encoding different regions of the input image. As such, the contrastive loss
of Eq. (1) ensures content and structure consistency between input and translated patches,
while the appearance of the output image is enforced using a discriminator, trained with an
adversarial loss [12].

3.2 Spatial attention for I2I translation

We assume a performant pre-trained object detector to be available, trained using images
from a source domain Y , with the aim of applying the detector to a new target detection
domain X . Our goal is to learn a function capable of performing the (inverse) image trans-
lation task G : X → Y such that detection performance is significantly improved for images
originally belonging to domain X . In contrast to previous works that extract separate rep-
resentations to encode global and instance-level information, respectively [2, 25, 46], our
approach alternatively guides translation to focus on the relevant instance regions, using
spatial attention masks. The spatial attention masks are generated by a dedicated trainable
module and weight the influence of separate image features in a final translation step.

We propose an attention-driven scheme that learns to decompose input image x into
foreground and background regions and encourages the translation model to focus on opti-
mising appearance of foreground objects. We adopt an encoder-decoder architecture where
the encoder EB acts as a feature extractor, and generates image representations of lower di-
mensionality. We decompose our decoder into two components: a content generator GC that
generates multiple image content maps and an attention generator GA that outputs attention
masks. Attention masks enable combination of the generated content maps in a learnable
fashion to obtain a final translated image. Fig. 2 depicts an overview of the proposed method.

More formally, input image x is first converted into a latent representation via feature
extractor EB: mE = EB(x). This representation serves as input to the content and attention
generators. The content generator GC generates a set of n content maps {Ct | t ∈ [0,n−1]}.
Each layer l of GC comprises a group of n convolutional filters, such that each filter is
associated with a specific content map. Content map t at layer l can be expressed as:
Ct

l = σ(Convt(Ct
l−1)) with t = 0, . . . ,n−1 and Ct

0 = mE , ∀t. The activation function σ(·)
is selected as a ReLU [1] in the intermediate layers, and σ(·) = tanh(·) in the final layer.
Similarly, the attention generator outputs a set of n+1 attention maps {At | t ∈ [0,n]}, using
n+1 convolutional filters per layer, with σ(·) = softmax(·) for the last layer. Finally, the
translated image G(x) is recovered through summation of the generated foreground content
maps, weighted by the respective attention masks, with an additional explicit component,
representing image background content:

G(x) =
n

∑
t=1

(Ct ⊙At)︸ ︷︷ ︸
foreground

+(x⊙An+1)︸ ︷︷ ︸
background

. (2)

By disentangling the translation task in this manner and explicitly modelling distinct
spatial regions, we enable our model to actively focus on discriminative image locations
containing objects. We find that accurate and precise translation of such image regions to be
of crucial importance for strong detection performance (see Sec. 4.2 for further details).
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Figure 2: Overview of the proposed method - see text for further details.

We follow previous contrastive I2I work [37] and train our generator using the InfoNCE
loss found in Eq. (1), which enforces content and structure consistency at the image patch
level. To ensure that translated images match the appearance of source domain Y , we further
use a discriminator module D trained with a standard adversarial loss:

Ladv =−Ey∼Y logD(y)−Ex∼X log(1−D(G(x))). (3)

The discriminator then minimises the negative log-likelihood for a standard binary clas-
sification task and this is equivalent to minimising the Jensen-Shannon (JS) divergence be-
tween the model output distribution and real source domain distribution Y .

Our scheme, thus far, has equipped the generator model with the ability to treat different
image regions non-uniformly by decomposing the image into foreground and background
content. In order to further guide the translation task to attend to image regions containing
semantically meaningful content, we introduce an additional loss on the attention genera-
tor LGA , which exploits the relationship between local and global image patches. The full
optimisation objective can then be expressed as follows:

LG = Ladv +LNCE +LGA . (4)

3.3 Local-global contrastive learning
The contrastive loss of Eq. (1) maximizes mutual information between corresponding input
and output patches, ensuring structural consistency between the input and the translated im-
age. We further encourage our model to consistently encode local information, of benefit to
object detection tasks, and global information representing content that spans beyond objects
to uncountable amorphous regions of similar texture. The goal is to learn representations that
result in globally consistent translations while also remaining sensitive to accurate represen-
tation of local details and structure. To this end, we design an objective that (i) encourages
local representations of an image to be closer to the global representation of the same im-
age, (ii) encourages local representations of an image to be close to one another, (iii) pulls
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the global representations of an image’s distinct augmentations close to one another. This
provides the model with an ability to discriminate local representations that describe dif-
ferent content while encouraging patch representations of a common scene to cluster in the
latent space. Similar local, global strategies have previously proved successful in standard
unsupervised object detection settings [59] and here we alternatively explore the potential
benefits when translating content-rich scenes in a cross-domain object detection setup.

We decompose our input image x into 16 non-overlapping patches: P(x) = {xp | p ∈ [1,16]}.
We apply two different random augmentations to x, yielding transformed images x1 and x2
and correspondingly; two sets of transformed patches P1 and P2. To obtain local and global
representations for contrastive learning, we attach two projection heads to our attention gen-
erator GA, one assigned for local patches: MLPlocal and one assigned to the full global image:
MLPglobal. Following a common protocol, we additionally introduce momentum copies of
EB and GA, denoted GAm, EBm, where their weights are updated using an exponential moving
average. Forwarding images x1, x2 and patch sets P1 and P2 through encoders EB, EBm and
then decoders GA and GAm, generates two sets of global and local feature representations
{ fAx1, fAx2, fAxp

1 , fAxp
2} and { fAmx1, fAmx2, fAmxp

1 , fAmxp
2}, pertaining to the outputs of GA

and GAm, respectively. We then compute LNCE between all pairs in these feature sets to
optimise model discriminative power, with negative pairs drawn from a memory bank.

Finally, we define multi-scale supervision to improve the model’s ability to identify
salient regions. We introduce additional local and global MLP layers at the output of each
layer in GA and compute the infoNCE loss for each new set of features. As a result, our
unsupervised loss for GA can be expressed as follows:

LGA =
L

∑
i=1

wiLNCE
g↔g +

L

∑
i=1

wiLNCE
g↔l +

L

∑
i=1

wiLNCE
l↔l , (5)

where L is the number of layers in GA, and wi is a weight parameter controlling the impor-
tance of each layer contribution. The first term in our objective defined in Eq. (5), denoted
g ↔ g, computes the loss between global representations, while objective terms g ↔ l and
l ↔ l indicate that the infoNCE loss is considering local to global and local to local rep-
resentations, respectively. We clarify the number of hyperparameters introduced in Eq. (5)
as follows: the three component loss terms, LNCE

g↔g ,LNCE
g↔l and LNCE

l↔l , are computed using
multi-stage features from individual network layers. We use L= 4, leading to a total of four
weights wi, for each of the three loss terms. In practice, the weighting for each stage i is
common across the three losses, resulting in only four additional distinct hyperparameters
in total. We follow convention [59] and apply smaller weights to shallow layers and larger
weights to deeper layers.

By attaching the aforementioned loss to the features of the GA module, we conjecture
that we are able to encourage the attention generator to develop an enhanced sensitivity to
semantic content and attend to translation regions of importance for the object detection task.
For completeness, we additionally consider a scenario where annotation labels are available
and replace the local-global contrastive loss of Eq. (5) with a supervised object saliency loss.
We add a simple auxiliary object saliency task that uses a binary object mask k(x), explicitly
separating all foreground objects from the background, as a target ground truth. We introduce
a new convolutional layer ConvS in GA that receives the predicted attention maps before
softmax and outputs a binary object mask prediction m(x). The resulting supervised loss can
be defined as:

LGAsup
=−Ex∼X

[
k(x) logm(x)+(1− k(x)) log(1−m(x))

]
. (6)
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Method D.A. I2I Backbone person rider car truck bus train motor bike mAP ↑
FGRR [6] (TPAMI’23) ✓ Vgg-16 34.4 47.6 51.3 30.0 46.8 42.3 35.1 38.9 40.8
DAF+NLTE [31] (CVPR ’22) ✓ Res-50 37.0 46.9 54.8 32.1 49.9 43.5 29.9 39.6 41.8
TIA [68] (CVPR ’22) ✓ ✓ Res-50 34.8 46.3 49.7 31.1 52.1 48.6 37.7 38.1 42.3
SCAN [27] (AAAI ’22) ✓ Vgg-16 41.7 43.9 57.3 28.7 48.6 48.7 31.0 37.3 42.1
SIGMA [28] (CVPR ’22) ✓ Res-50 46.9 48.4 63.7 27.1 50.7 35.9 34.7 41.4 43.5
SDA [40] (CVPR ’21) ✓ Res-50 38.8 45.9 57.2 29.9 50.2 51.9 31.9 40.9 43.3
MGA [70] (CVPR ’22) ✓ Vgg-16 43.9 49.6 60.6 29.6 50.7 39.0 38.3 42.8 44.3
DA-DETR [65] (CVPR ’23) ✓ Res-50 49.9 50.0 63.1 24.0 45.8 37.5 31.6 46.3 43.5
memCLR [52] (WACV’23) ✓ Vgg-16 37.7 42.8 52.4 24.5 40.6 31.7 29.4 42.2 37.7
MIC [16] (CVPR 23) ✓ Vgg-16 52.4 47.5 67.0 40.6 50.9 55.3 33.7 33.9 47.6
CDAT [3] (CVPR 23) ✓ Vgg-16 42.3 51.7 64.0 26.0 42.7 37.1 42.5 44.0 43.8
Ours - supervised (LGAsup

) ✓ Res-50 44.4 49.5 61.4 32.6 50.8 52.2 38.3 44.0 46.7

CUT∗† [37] (ECCV ’20) ✓ Res-50 39.6 45.3 59.4 27.9 47.4 45.4 35.3 39.2 42.4
FeSeSim∗† [69] (CVPR ’21) ✓ Res-50 40.9 47.2 58.4 28.4 48.6 49.8 34.3 42.7 43.8
Qs-Att.∗† [18] (CVPR ’22) ✓ Res-50 42.2 49.0 60.3 23.5 50.5 52.0 36.6 41.4 44.4
NEGCUT∗† [55] (CVPR ’21) ✓ Res-50 42.2 48.2 58.8 27.9 47.8 50.2 34.9 43.7 44.2
Hneg_SCR∗† [22] (CVPR ’22) ✓ Res-50 42.8 46.9 59.7 32.3 48.4 48.9 36.8 43.4 44.9
Santa∗† [60] (CVPR ’23) ✓ Res-50 42.3 47.9 59.4 34.4 49.3 49.1 36.4 42.3 45.1

Source Res-50 35.5 38.7 41.5 18.4 32.8 12.5 22.3 33.6 29.4
Target Oracle Res-50 47.5 51.7 66.9 39.4 56.8 49.0 43.2 47.3 50.2
Ours - local-global † (LGA ) ✓ Res-50 43.2 50.1 61.7 33.3 48.6 47.8 35.2 42.6 45.3

Table 1: The Foggy Cityscapes → Cityscapes adaptation scenario. We report object detection (mAP)
per class. Previous works utilises detector adaptation (D.A), image-to-image translation (I2I) compo-
nents. Locally reproduced methods using publicly available codes are indicated by *. We separate
methods that do (upper) and do not (lower) have access to object annotations at training time, with the
latter methods denoted †. Results are denoted best and second best for upper and lower table sections.

Method D.A. I2I car person mAP ↑
DARL [26] (CVPR ’19) ✓ ✓ 58.7 46.4 52.5
DAOD [42] (BMVC ’19) ✓ ✓ 59.1 47.3 62.9
DUNIT [2] (CVPR ’20) ✓ ✓ 65.1 60.7 62.9
MGUIT [19] (CVPR ’21) ✓ 68.2 58.3 63.2
InstaFormer [25] (CVPR ’22) ✓ 69.5 61.8 65.6
DA-DETR [65] (CVPR ’22) ✓ 48.9 - -
Source 63.4 55.0 59.2
Target Oracle 77.4 66.3 71.8
Ours - supervised (LGAsup

) ✓ 71.0 59.5 65.2
Ours - local-global † (LGA ) ✓ 67.5 60.7 64.1

Method D.A. I2I Backbone APcar ↑
HTCN [4] (CVPR ’20) ✓ ✓ Vgg-16 42.5
UMT [10] (CVPR ’21) ✓ ✓ Vgg-16 43.1
FGRR [6] (PAMI ’23) ✓ Vgg-16 44.5
DSS [57] (CVPR ’21) ✓ Res-50 44.5
SWDA [44] (CVPR ’19) ✓ Res-50 44.6
SCDA [72] (CVPR ’19) ✓ Res-50 45.1
AFAN [54] (TIP ’21) ✓ ✓ Res-50 45.5
GPA [61] (CV PR′20) ✓ Res-50 47.6
SDA [40] (CVPR ’21) ✓ Vgg-16 49.3
MGA [6] (CVPR ’22) ✓ Vgg-16 49.8
KTNet [49] (ICCV ’21) ✓ Vgg-16 50.7
SSAL [33] (NeurIPS ’21) ✓ Vgg-16 51.8
SCAN [27] (AAAI ’22) ✓ Vgg-16 52.6
SIGMA [28] (CVPR ’22) ✓ Vgg-16 53.4
DA-DETR [65] (CVPR ’23) ✓ Vgg-16 54.7
Source Res-50 41.7
Ours - supervised (LGAsup

) ✓ Res-50 53.6
Ours - local-global † (LGA ) ✓ Res-50 52.1

Table 2: Adaptation results for KITTI → Cityscapes (left) and Sim10K → Cityscapes (right).

4 Experiments

4.1 Datasets
Foggy Cityscapes → Cityscapes. Cityscapes [9] was collected by capturing images from
outdoor urban street scenes, containing 2,975 images for training and 500 images for testing
with eight annotated object categories, namely: person, rider, car, truck, bus, train, motor-
cycle and bicycle. Foggy Cityscapes [45], analogously, is a synthetic foggy dataset rendered
using Cityscapes, using aligned depth information to simulate synthetic fog on the original
clear weather scenes. We firstly evaluate our method under this adversarial weather scenario.

KITTI → Cityscapes. KITTI [11] is a widely used autonomous driving dataset con-
taining videos of traffic scenarios recorded with different sensors. The dataset consists of
7,481 training images and 7,518 test images, with a total of 80,256 annotated objects which
span eight different categories: car, van, truck, pedestrian, person sitting, cyclist, tram, misc.
In this challenging real-to-real translation scenario, we study cross-camera adaptation by
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Figure 3: Col 1: input images. Cols 2− 4: learned foreground attention masks. Local-global self-
supervision accentuates semantic object content regions and improves translation in areas critical for
object detection (e.g. people, cars). Col 5: translated output images.

performing translation from Cityscapes [9] imagery and evaluate on classes car and person.
Sim10k → Cityscapes. Sim10k [21] is a simulated dataset generated using the GTA-V

game engine. It consists of 10,000 images of synthetic driving scenes and 58,701 annotated
object instances. We perform domain adaptation between the synthesized imagery and the
real-world images of the Cityscapes [9] dataset. Here we evaluate our proposed approach by
considering detection performance using the car class, following a common protocol.

4.2 Comparison with State-of-the-Art
Foggy Cityscapes → Cityscapes. We report object detection results under our initial adap-
tation scenario in Tab. 1. We present detection performance in terms of per-class average
precision (AP) and mean average precision (mAP). With respect to the subset of methods
that do not have annotations, our self-supervised local-global configuration achieves state-
of-the-art performance of 45.3% mAP with the supervised counterpart offering additional
further improvement of 46.7%. We additionally probe framework efficacy by replacing our
specific I2I translation model with three alternative state-of-the-art I2I approaches, whilst
keeping the object detector component fixed. Namely we consider I2I approaches CUT [37],
FeSeSim [69] and Qs-Attn [18] (see Tab. 1, lower). Our translation model can show detec-
tion gains c.f. these recent I2I translation models, in each case. We attribute improvements
to our local-global framework, capable of accurate object region translation. We provide vi-
sualisations of the learned attention masks in Fig. 3. These intend to highlight the ability to
delineate semantically meaningful regions and attend to relevant discriminative areas in local
regions. Specifically, we observe that generated attention masks focus on semantic regions
that contain objects, enhancing the discriminative ability of the model.

KITTI → Cityscapes. In Tab. 2 (left) we report results for this adaptation scenario in
comparison with several instance-aware translation methods. Following [2], we present the
per-class (AP) in addition to the mAP for classes car and person. Our supervised model
achieves 65.2% mAP, while our self-supervised local-global strategy again exhibits compet-
itive performance. Our local-global approach stands out as the only method in Tab. 2 that
does not rely on object annotations during training for this challenging real-to-real scenario.

Sim10k → Cityscapes. In Tab. 2 (right) we report detection results for a further adap-
tation scenario. In this setting our approach is able to achieve 52.1% and 53.6% AP50 in
self-supervised and supervised settings, respectively. Compared with recent strategies that
specifically employ an image translation module and use an identical detector backbone
(namely AFAN [54]) our supervised model achieves gains of over 8%. Our self-supervised
variant trained with local-global contrastive learning can also achieve performance competi-
tive with detector adaptation based methods, yet without access to object label information.
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4.3 Ablative study
We examine the impact of the proposed components in detail and report results in Tab. 3. We
select the Foggy Cityscapes → Cityscapes adaptation scenario and train the proposed model
architecture under the following ablations: (i) without the GA network and without the pro-
posed attention module; (ii) with the GA network, with the proposed attention module and
without loss LGA ; (iii) with the GA network, with the proposed attention module and with
an unsupervised LGA loss; and finally (iv) with the GA network, with the proposed attention
module and with a supervised LGAsup

loss. All models are trained under identical settings
which are reported in our supplementary materials. In all cases we use the adversarial loss
Ladv found in Eq. (3) and the InfoNCE loss found in Eq. (1). We observe that detection
performance is lower in case (i) where all method components under consideration are ab-
sent. In case (ii) performance is improved by 0.5–1.7% mAP@.5 which we attribute to the
addition of the proposed attention module, trained without any guidance (i.e. LGA = 0). In-
clusion of all components results in 2.3–2.6% mAP@.5 gains for the unsupervised model
(case (iii)) and 2.3–4% mAP@.5 gains for the supervised model (case (iv)). We provide
further ablative comparisons in our supp. materials.

Det. backbone GA LGA Supervision Attention mAP@[.5:.95] mAP@.5 mAP@.75 mAP@[.5:.95] mAP@[.5:.95] mAP@[.5:.95]
small medium large

- 23.0 42.7 21.8 2.2 20.8 47.4
✓ - ✓ 23.5 44.4 20.8 2.5 22.3 46.3

Res-50 ✓ ✓ local–global LGA ✓ 24.1 45.3 23.2 2.6 23.3 47.1
✓ ✓ supervised LGAsup

✓ 24.5 46.7 22.9 2.7 23.4 47.1

Table 3: Ablation on method components (Foggy Cityscapes → Cityscapes).

We additionally present a feature-level visualization via t-SNE [50] in Fig. 4, towards evi-
dencing method effectiveness in terms of identifying relevant salient object regions.

(a) Baseline without GA (b) supervised GAsup
(c) self-supervised GA

Figure 4: t-SNE feature visuliazation; we randomly
sample object features corresponding to salient ob-
jects (red) and image background regions (blue).

We visualise two classes, defined using
object bounding box labels, as {object,
background} and randomly sample 1000
feature points. We observe that in case
(a) the learned representations do not afford
discriminability between these two classes.
Adding the supervised object saliency sig-
nal in case (b) results in a clearly separable
learned feature embedding. Finally, in case
(c) we evidence that our self-supervised
local-global model, using Eq. (5), can enhance separability c.f. case (a), which concurs with
our empirical observations that manifest as object, background disentanglement behaviour.

5 Conclusion
We propose a novel approach for cross-domain object detection using unpaired image-to-
image translation. Our contrastive-learning based attention mechanism endows the model
with object awareness and steers feature representations to be discriminative in terms of
benefit to downstream detection tasks, post image translation between source and target do-
mains. We explore generation of attention masks in fully unsupervised regimes and evidence
competitive detection results in comparison with numerous state-of-the-art methods, whilst
requiring neither domain-paired image data nor access to object labels.
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