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6 Improving Object Detection via Local-global
Contrastive Learning: Supplementary materials

We provide additional materials to supplement our main paper. In Sec. 6.1 we report ad-
ditional qualitative results to complement those found in the main paper. Sec. 6.2 provides
a sensitivity analysis and further extended ablative study on method components for vari-
ous detector backbone architectures. In Sec. 6.3 we provide a comparison with contrastive
learning based 121 translation methods. Finally, Sec. 6.4 gives supplementary information on
learning hyperparameters and further implementation details.

6.1 Additional qualitative results

We show additional visualisations of the learned attention masks, for our two instantiations
of G4, in Fig. S1. We observe that in the supervised case the attention masks learn to ex-
plicitly focus on detection target instances. In the self-supervised local-global case, even if
foreground / background separation in relation to detection targets is less clear, we find the
model is still able to learn to disentangle the semantic content and focus on regions that con-
tain objects. We illustrate further qualitative detection performance results, under the three
adaptation scenarios studied in the main paper, in Figs. S3, S4 and S2. The provided ex-
amples further illustrate adaptation gains and the ability of the proposed method to improve
cross domain detection performance.

6.2 Sensitivity analysis

We examine the impact of the proposed components in detail and report results in Tab. S1.
We select the Foggy Cityscapes — Cityscapes adaptation scenario and train the proposed
model architecture under the following ablations; (i) without the G4 network and without
the proposed attention module, (i) with the G4 network, with the proposed attention module
and without loss L, , (iif) with the G4 network, with the proposed attention module and with
an unsupervised Lg, loss and finally (iv) with the G4 network, with the proposed attention
module and with a supervised L, loss. All models are trained under identical settings which
are reported in Sec 6.4. In all cases we use the adversarial loss L4, found in Eq. (3) and the
InfoNCE loss found in Eq. (1) of the main paper.

We observe that detection performance is lower in case (i) where all method components
under consideration are absent. In case (if) performance is improved by 0.5-1.7% mAP@.5
which we attribute to the addition of the proposed attention module, trained without any
guidance (i.e. Lg, = 0). Inclusion of all components results in 2.3-2.6% mAP@.5 gains
for the unsupervised model (case (iii)) and 2.3-4% mAP@.5 gains for the supervised model
(case (iv)). We note that when using the Res-Net-101-FPN backbone, our unsupervised
model (MAP@.5 49.1) outperforms its supervised counterpart (mAP@.5 48.0), highlight-
ing the potential of our unsupervised proposal. Our unsupervised loss not only guides the
attention generator towards disentangling background and foreground, but additionally im-
proves representation learning at the level of the encoder network. We conjecture that this is
more effective on higher capacity networks such as Res-Net-101. Finally, the ablation study
provides quantitative evidence towards verifying the efficacy of the individual components
under the proposed method.

We conduct a further sensitivity study on detector training settings and backbone model
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Figure S1: Visualization of the learned foreground attention masks of the proposed supervised model
(rows 1-4) and self-supervised local-global model (rows 5-8). Column 1 shows the input (foggy
weather) image, columns 2—4 visualize attention masks from 3 different channels A; and column 5
shows the translated (clean weather) result.

Figure S2: The Foggy Cityscapes — Cityscapes adaptation scenario. In all cases the detector model is
trained on the Cityscapes dataset and evaluated on Foggy Cityscapes. We visualise detection inference
results on Foggy Cityscapes imagery (column 1), detection inference results on translated imagery
(column 2) and an (unpaired) real image from the Cityscapes dataset, to aid effective translation as-
sessment (column 3).
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Figure S3: The Sim10k — Cityscapes adaptation scenario. In all cases the detector model is trained on
the Sim10k dataset and evaluated on Cityscapes. We visualise detection inference results on Cityscapes
(column 1), inference result on the translated image (column 2) and an (unpaired) real image from the
Sim10k dataset, to aid effective translation assessment (column 3).

n — = L wdl k
Figure S4: KITTI — Cityscapes adaptation scenario. In all cases the detector model is trained on
KITTI dataset and evaluated on Cityscapes. We visualise detection inference results on Cityscapes
(column 1), detection inference results on a translated image (column 2) and an (unpaired) real image
from the KITTI dataset, to aid effective translation assessment (column 3).
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Det. backbone Gy E(;A EGA type Attention mAP@[.5:95] mAP@.5 mAP@.75 mAP@[.5:95] mAP@[.5:95] | mAP@[.5:95]
small medium large
23.0 42.7 21.8 22 20.8 47.4
v - v 235 44.4 20.8 2.5 223 46.3
R-50-C4** v v/ unsupervised v 24.1 453 232 2.6 233 47.1
v v supervised v 24.5 46.7 229 2.7 23.4 47.1
243 45.5 21.9 38 22.4 46.1
v - v 25.2 46.2 232 4.0 242 46.8
R-101-FPN v v unsupervised v 26.2 49.1 244 5.1 253 47.1
v v supervised v 26.0 48.0 24.1 4.7 25.0 46.3
243 44.6 227 25 21.7 50.4
v - v 24.8 45.1 234 25 23.0 50.1
R-50-DC5 v v/ unsupervised v 25.9 472 24.0 2.5 24.1 50.2
v v supervised v 25.7 46.9 245 2.5 23.7 51.6

Table S1: Ablation on method components (Foggy Cityscapes — Cityscapes). We report the effect of
ablating method components in columns 2-5, across multiple detector backbone networks. ** denotes
R-50-C4 experimental results, also reported in the main paper.

Model backbone Weight init. FPN  Eval. scenario person rider car truck bus train motor bike mAP@.51
source 49.1 403 467 303 36.8 240 29.1 428 374
R-50-FPN ResNet-50  COCO v/ target oracle 749 597 605 440 69.0 58.6 50.1 522 58.6
ours unsupervised | 67.0 545 58.6 39.7 57.1 443 413 492 51.4
source 46.6 38.6 451 206 356 105 29.7 403 334
R-50-FPN ResNet-50  ImageNet v’ target oracle 748 578 61.0 422 67.0 50.0 50.0 52.1 56.9
ours unsupervised | 69.1 529 593 36.5 573 43.8 46.1 486 51.7
source 355 387 415 184 328 125 223 336 29.4
R-50-C4+** ResNet-50  ImageNet target oracle 475 517 669 394 568 49.0 432 473 50.2
ours unsupervised | 43.2  50.1 61.7 333 48.6 478 352 426 453
source 354 393 438 223 349 89 233 341 30.2
R-101-C4 ResNet-101 ImageNet target oracle 46.8 49.6 674 405 60.6 527 427 454 50.7
ours unsupervised | 43.1 482 624 359 517 460 363 443 46.0
source 38.1 43.0 452 249 373 274 247 379 34.8
R-101-FPN ResNet-101  ImageNet v source 542 577 727 448 598 473 459 480 53.8
ours unsupervised | 49.8 54.1 66.7 414 524 463 374 374 49.1
source 365 413 466 268 37.1 160 272 375 33.6
R-101-DCS ResNet-101  ImageNet target oracle 463 51.0 675 438 620 523 437 471 51.7
ours unsupervised | 44.0 486 626 402 554 42,7 373 443 46.9
source 359 38.1 455 328 293 250 225 297 324
Retina-101-FPN  ResNet-101  ImageNet v’ target oracle 427 481 645 385 505 376 351 392 44.7

ours unsupervised | 41.1 463 605 373 474 364 315 378 423

Table S2: Sensitivity analysis considering backbone model architecture and detector training settings
(Foggy Cityscapes — Cityscapes). ** indicates experimental results, reported in the main paper.

architectures. Results are found in Tab. S2. We select the Foggy Cityscapes — Cityscapes
adaptation scenario for our analysis. Towards fair comparison with existing work, all results
reported in the main paper follow the common experimental setup as described in multi-
ple previous works [11, 29, 30, 43, 71, 73]; i.e. making use of a Faster-RCNN model with
a Res-Net-50-C4 backbone. Experimentally, we additionally consider and evaluate a total
of six backbones: Res-Net-50-C4, Res-Net-50-FPN, Res-Net-101-C4, Res-Net-101-FPN,
Res-Net-101-DC5 and Retina-101-FPN. Futher details regarding the aforementioned archi-
tectures are found in [S7]. All models are trained using the hyperparameters and settings
reported in Sec. 6.4.

For every experiment we report detection performance on imagery pertaining to source,
target oracle, and local-global; which refer to images obtained from Foggy Cityscapes,
Cityscapes datasets and images generated by our self-supervised local-global model, respec-
tively. We observe consistent gains, over the baseline source evaluation scenario, that range
from 9.9-18.3% mAP@.5 under all considered backbones architectures. Models that in-
corporate the FPN module [S3] (denoted as *-FPN) consistently outperform the baseline
backbones (denoted as *-C4), with Retina-101-FPN being an exception. We additionally
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Figure SS: Enlarged version of the main paper feature visuliazation via t-SNE. We randomly sample
object features corresponding to salient object and background regions. We compare (a) baseline model
without G4, (b) a model with supervised G4, (c) a model with self-supervised G4 using the Eq. (5) loss.

observe that pre-training the detector on the COCO dataset [33] improves both source and
target domain performance which may be attributed to the fact that the model initialisation
has then been optimised for an object detection task.

Our exploration of additional model backbones allows us to evidence scenarios in which
our approach, promisingly, brings us to within 2.5% of target oracle performance (e.g.
Retina-101-FPN). Finally, we note that mAP accuracy increases cf. our main paper results
are possible, however we opt to retain the R-50-C4 setting in our manuscript, towards high-
lighting fair comparisons.

6.3 Comparison with contrastive learning 121 translation methods

We further evaluate the quality of the translated images using standard 121 translation metrics.
Tab. S3 reports Frechet Inception Distance [16] (FID) and Kernel Inception Distance [3]
(KID), comparing our approach with images generated using CUT [40], FeSeSim [72] and
Qs-Attn [19]. We use object labels to explicitly evaluate image quality in regions that contain
object instances; by computing the aforementioned metrics exclusively only in those regions.
These derivative metrics are denoted FIDysr and KIDysr, respectively. Interestingly, our
method shows improvement in standard I2I translation metrics. Large improvements can be
found in our object-region specific metrics, in the case when object labels are available.

We compare our translation results with CUT [40], FeSeSim [72] and Qs-Attn [19] in
Fig. S6. It may be observed that while previous methods are successful in transferring the
global style and appearance, they often struggle to capture instance-level details and result
in poor translation quality in local object areas. By identifying salient object regions, our
approach guides the translation task to optimise appearance of object instances and achieve
superior image quality in the relevant image regions.

Method FID | KID | FIDiyst 4 KID st 4
CUT* [40] (ECCV "20) 0.21 0.84 0.61 2.77
FeSeSim*' [72] (CVPR '21) 0.20 0.74 0.51 1.97
Qs-Att.*" [19] (CVPR *22) 0.20 0.83 0.55 2.23
Ours - supervised 0.18 0.67 0.47 1.44
Ours - local-global f 0.19 0.70 0.51 2.02

Table S3: Comparison of recent contrastive learning based image-to-image translation methods, across
image quality metrics, under the Foggy Cityscapes — Cityscapes setting.
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Figure S6: Qualitative comparison with state-of-the-art contrastive learning based 121 methods. We
compare against foggy input (Column 1), CUT [40] (Column 2), FeSeSim [72] (Column 3), Qs-
Attn [19] (Column 4), Our method (Column 5). Our approach achieves better translation in object
regions through the proposed attention driven scheme. Best viewed with digital zoom.

6.4 Implementation details

Detector training details All detectors are trained using identical hyperparameters and set-
tings; we employ Stochastic Gradient Descent (SGD) with base learning rate 0.001, batch
size of 4 and weight decay of 5x107*. Unless otherwise stated, we initialize the models
with ImageNet weights and decrease the learning rate after 50000 and 70000 iteration steps
with 7 = 0.1, for a total of 100,000 training iterations. Following common protocol, all im-
ages are resized such that the smallest side length (i.e. width or height) is 600 pixels both
during training and test. All models are implemented using Detectron2 [S7] and PyTorch
libraries [S5].

Image translation training details We build our image-to-image (I2I) translation model
using a patchwise multi-layer component, similar to [40]. For fair comparison, all models
in Tab. 1 and Tab. S3 are trained for a total of 400 epochs using an Adam optimizer [28]
with momentum parameters b1=0.5, b¥2=0.99 and an initial learning rate le—5. The input
images are resized such that the smallest size is 600 pixels during training. We perform
inference on full resolution images during test.

When training the self-supervised local-global translation model, unless stated otherwise,
we follow training settings aligned with [62]. For data augmentation, we apply random
horizontal flip, gaussian blur and color jittering related to brightness, contrast, saturation, hue
and grayscale. Our local patch generation process follows the approach of [S4]. Namely, a
random region is firstly cropped such that it covers at least 60% of the original global image,
followed by the aforementioned data augmentation operations. The image is divided into
4x4 grid areas which are randomly shuffled to obtain the final 16 local patches. Finally,
we set weights of Eq. (5) to 0.1, 0.4, 0.7, 1.0 for objective terms wy, w», w3, wy respectively,
where each term pertains to a different convolutional layer of networks G4 and Gy,,.

Network Architectures We denote a network convolutional layer that contains f filters,
with stride x and a y X y kernel size to be a cf-sx-ky layer. In this notation convention, c64-
s1-k3 denotes a convolutional layer that applies 64 filters with a stride of 1 and kernel size
3 x 3. Futhermore, we denote a convolutional layer that applies the transposed convolution
operation using f filters, a stride of x and kernel size y X y as uf-sx-ky. Unless stated other-
wise, every cf-sx-ky and uf-sx-ky layer is followed by a ReLu [S1] activation function and
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InstanceNorm [S6] normalization layer.

We deploy a patchGAN discriminator [S2] D with an architecture that can be denoted
by [c64-52-k4, c128-52-k4, c256-52-k4, 512-51-k4]. Accordingly, we model the feature ex-
tractor network Ep using layers [c64-s2-k7, c128-s2-k3, c256-s2-k3, 9-r256-s1-k3] where
9-r256-s1-k3 denotes 9 residual blocks with 2 convolutional layers, each. We implement
network G¢ as [u128-s2-k7, u64-s2-k3, u27-s1-k7], where the u27-s1-k7 layer is followed
by a tanh activation function, without a normalization layer.

For the attention generator G4 we use an architecture denoted by [u128-52-k7, u64-s2-
k3, ul0-s1-k7] where the last layer, u10-s1-k7, is followed by a Softmax function which
generates the attention masks. The supervised model additionally trains two filters c2-s1-
k7 in network G4 which produce the object saliency prediction. Our fully self-supervised
model follows the same architecture as the supervised model for Eg, G¢ and G4 with the
only exception being the object saliency filters, c2-s1-k7, in G4. In the self-supervised case,
momentum networks Ep,,, G4, follow identical architectural copies of Ep, G4, respectively.
More specifically, we optimize layers [u128-s2-k7, u648-s2-k3, ul0-s1-k7] and [um=128-
§2-k7, um+64-s2-k3, um=10-s1-k7] together, where umx* denotes the corresponding layers
of G4,,. We additionally optimize layers ¢256-s2-k3 and cm*256-s2-k3 together, pertaining
to Ep and Ep,, respectively, via Eq. (5) of the main paper. We attach 4 global and 4 local
MLP heads to each of these layers to obtain the final representations. The set of MLPs are
implemented as a set of linear layers followed by ReLU activation function. All experiments
are performed on four NVIDIA V100 GPUs, each with 32GB of RAM.
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